Serotonin-induced spike narrowing in a locomotor pattern generator permits increases in cycle frequency during accelerations.

نویسندگان

  • R A Satterlie
  • T P Norekian
  • T J Pirtle
چکیده

During serotonin-induced swim acceleration in the pteropod mollusk Clione limacina, interneurons of the central pattern generator (CPG) exhibit significant action potential narrowing. Spike narrowing is apparently necessary for increases in cycle frequency during swim acceleration because, in the absence of narrowing, the combined duration of the spike and the inhibitory postsynaptic potential (IPSP) of a single cycle is greater than the available cycle duration. Spike narrowing could negatively influence synaptic efficacy in all interneuron connections, including reciprocal inhibitory connections between the two groups of antagonistic CPG interneurons as well as the interneuron-to-motoneuron connections. Thus compensatory mechanisms must exist to produce the overall excitatory behavioral change of swim acceleration. Such mechanisms include 1) a baseline depolarization of interneurons, which brings them closer to spike threshold, 2) enhancement of their postinhibitory rebound, and 3) direct modulation of swim motoneurons and muscles, all through inputs from serotonergic modulatory neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Mechanisms Underlying Swim Acceleration in the Pteropod Mollusk Clione limacina1

SYNOPSIS. The pteropod mollusk Clione limacina swims by dorsal-ventral flapping movements of its winglike parapodia. Two basic swim speeds are observed—slow and fast. Serotonin enhances swimming speed by increasing the frequency of wing movements. It does this by modulating intrinsic properties of swim interneurons comprising the swim central pattern generator (CPG). Here we examine some of the...

متن کامل

Cellular Mechanisms Underlying Swim Acceleration in the Pteropod Mollusk Clione limacina.

The pteropod mollusk Clione limacina swims by dorsal-ventral flapping movements of its wing-like parapodia. Two basic swim speeds are observed-slow and fast. Serotonin enhances swimming speed by increasing the frequency of wing movements. It does this by modulating intrinsic properties of swim interneurons comprising the swim central pattern generator (CPG). Here we examine some of the ionic cu...

متن کامل

Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord.

The persistent sodium current (I(Na(P))) has been implicated in the regulation of synaptic integration, intrinsic membrane properties, and rhythm generation in many types of neurons. We characterized I(Na(P)) in commissural interneurons (CINs) in the neonatal (postnatal days 0-3) mouse spinal cord; it is activated at subthreshold potentials, inactivates slowly, and can be blocked by low concent...

متن کامل

Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord.

The V2a class of Chx10-expressing interneurons has been implicated in frequency-dependent control of left-right phase during locomotion in the mouse. We have used the Chx10::CFP mouse line to further investigate the properties and locomotion-related activity of V2a interneurons in the isolated neonatal spinal cord. V2a interneurons can be divided into three classes, based on their tonic, phasic...

متن کامل

Postembryonic maturation and putative modulation of the central pattern generator for flight in Manduca sexta

The biogenic amine octopamine modulates a variety of aspects of insect motor behavior, including direct action on the flight central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating networks are di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 4  شماره 

صفحات  -

تاریخ انتشار 2000